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Abstract In this paper we describe a class of stochastic biochemical systems exhibit-
ing bistable behavior, in the sense that the invariant measure associated to the system
is concentrated near two different classes of states of the system. We develop meth-
ods that allow us to describe the behavior of the invariant measure in some suitable
asymptotic limits, as well as the switching times for the transitions between the states
close to each of the states with high probability. Due to the discrete character of the
problem, switching times cannot be computed using the classical Kramers’ formula,
and alternative methods are required.

Keywords Stochastic chemical system · Bistable behavior · Switching times ·
Markov processes

1 Introduction

A remarkable property of the biochemical systems already noticed in [43] is the fact
that they behave in a deterministic manner even if some of the mechanisms driving
the whole biochemical machinery are made of few molecules. A natural question
that arises is that how the biological systems manage to behave in a deterministic
manner under a very noisy environment, where the molecules involved are affected by
Brownian motions as well as the stochasticity induced by the probabilistic character
of chemical reactions.
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On the other hand, there exist many biological processes where stochastic events
seem to play a crucial role. There is strong experimental evidence indicating that
cellular variability is due in some cases to the stochastic character of gene expression
(cf. [9,17,49]). In particular, stochasticity plays a role in cell fate decision of stem
cells (cf. [37,44]). It has also been suggested, being motivated by the analysis for
stochastic models of biochemical reactions, that the random variation observed in
some pathogenic organisms could be due to the fluctuations of the chemical reactions
(cf. [2]) in their regulatory circuits. The variability of pathogenic bacteria has several
important functional consequences, for instance helping them to evade host defenses
(cf. [25,50]). The role of stochastic cell behaviour in the generation of collective
oscillatory behaviours has deserved a lot of attention both from the experimental and
theoretical points of view (cf. [16,27,32]).

There are some biological examples where multistable biochemical networks seem
to play a role in the functionality of the system. The best documented system seems
to be the MAPK cascade in Xenopus oocytes (cf. [24]). It is also widely accepted
that there are cases in which cell fate can be determined by stochastic choices
among the different equilibria of a chemical system, and that cells can change their
state due to fluctuations of molecular concentrations. The best known example is
probably the choice of lisis–lisogeny decision in λ-phage where computer simu-
lations support the stochastic origin of the choice (cf. [2]). Other candidates for
bistable behaviour in biological systems can be found in the review paper [24].
Bistable behaviour is more clearly established in engineered genetic systems. The
first example constructed was the so-called genetic-toggle switch in Escherichia
coli and its construction was described in [28]. The first bistable engineered sys-
tem in eukariotes was an artificial genetic circuit built in Saccharomyces cerevisiae
(cf. [7]).

Due to the importance of stochasticity in biochemical processes it is relevant to
develop mathematical techniques for the analysis of stochastic biochemical networks.
Stochastic chemical systems have been studied long time ago (cf. [10]) and numerical
algorithms to simulate these processes were introduced in the seventies (cf. [3,31]).
In particular Gillespie’s algorithm has become increasingly popular in order to sim-
ulate the dynamics of stochastic chemical processes. Some examples of the study of
stochastic chemical networks that use both analytical and numerical methods can be
found in [19,20,36,42,52–54].

Most of these papers describe the dynamics of molecular chemical reactions assum-
ing that these take place by means of independent Poisson processes (cf. [31]). The
evolution of such a system is modeled using a master equation. The resulting mathe-
matical model is a linear system of infinitely many differential equations for the prob-
abilities of having a given number of molecules for the different chemicals involved
in the process. A stochastic simulation algorithm is suggested in [30,31] in order to
approximate such probabilities. Some numerical studies of molecular dynamics based
on the methods of Gillespie can be found in [20,29,54].

There are relatively few analytical studies of the master equations describing the
evolution of the number of molecules in a chemical system. Such analysis can provide
meaningful results only in some specific asymptotic regimes, due to the increasing
complexity of the equation with the growth of the number of chemicals involved.
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Several such studies have been made in the limit of many molecules, beginning with
the seminal work in [40]. (cf. for instance [4]).

On the other hand, several papers have considered the study of master equations
with different time scales. Roughly speaking, in such analysis, it is assumed that the
chemical reactions can be split into a group of fast reactions and a group of slow
reactions. Fast reactions reach equilibria very quickly and this allows us to define
a reduced system for the set of variables that do not reach equilibria rapidly. This
reduction of the system allows us to introduce more efficient simulation methods for
molecular systems since it reduces the complexity of the system under consideration.
Some works in this direction are for instance, [11,12,33,42,41,45,46,48]. Meanwhile,
many works use the fact that stochastic chemical networks with first order kinetics
can be solved explicitly by iteration or using the formalism of generating functions
(cf. [5,6,10,15,26,51]).

There have been several studies on the connection between the topological prop-
erties of the biochemical network and the dynamical behaviour of the network.
A paradigmatic example of this approach is the so-called “Zero Deficiency Theorem”
(cf. [22,35]). This Theorem states that a large class of chemical networks satisfying
some topological constraints can have only one nontrivial steady state in each stoichio-
metric class. The constraints are easy to check in each specific example. The original
result was proved for deterministic systems (cf. [22]), but it has been also proved that
mass action reaction networks with zero deficiency have invariant measures which
can be written as convex combinations of products of Poisson distributions for each of
the chemical concentrations (cf. [1]). On the other hand, the articles [13,14] contain
necessary and sufficient conditions in order for a network to have multiple quasi-
steady-states. We remark that the aim of these studies is not to derive conditions for a
given chemical reaction to ensure a particular type of behaviour, but to obtain condi-
tions for the topology of the network which allow possible behaviours of the chemical
system with a choice of reaction coefficients, or its impossibility with any choice of
coefficients.

Our goal is to study conditions on the network structure and on the distribution of
chemical coefficients for ensuring that a molecular system behaves in a deterministic
manner. More precisely, we intend to obtain molecular systems which evolve according
to stochastic dynamics and exhibit multistability with large switching times between
the different steady states of the system.

In this paper as well as in the companion paper [34] we will describe some sim-
ple examples of biochemical networks yielding bistability, where we compute long
switching times in some suitable sense that will be precised later. We will not intend
to study existing molecular systems, but we will concentrate on the study of abstract
systems of stochastic chemical reactions that could help to clarify the underlying
principles yielding deterministic behaviour. The systems under consideration will be
studied using classical asymptotic methods and it will provide some insight on how
the network structure and the choice of the coefficients can influence multistability
and switching times.

We will focus on the study of stochastic biochemical networks containing large
(or small) parameters. The large parameters considered in this paper will be the rel-
ative size of some of the chemical coefficients. In [34] a different type of limit will
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be considered, namely, the number of chemical species involved in the reactions.
Among all the possible quantities that can be computed, we will focus on the switch-
ing times between different multiple states. There are several reasons for studying
switching times. First, they are intrinsically interesting by themselves. On the other
hand, their size provides a measure of how deterministic is the behaviour of a bio-
chemical system, since the switching times provide an estimate of the time required
to switch to another steady state among the possible ones of a system. A detailed
computation of switching times in some asymptotic limits can provide insights on the
factors (like chemical coefficients, network structure or others) that can yield more
deterministic or more “random-like” type of behaviours. In particular we will focus in
this paper on finding examples of biochemical networks that could give deterministic
behaviour.

The study of the computation on the rates of chemical reactions which take place
to overcome an activation energy has deserved a lot of attention. Usually in these
cases the switching times rescale exponentially with the activation energy. The first
results in this direction were obtained in one-dimensional models by Eyring (cf. [21])
and Kramers (cf. [39]). Kramers’ formula has been often used to compute switching
times in biochemical systems (cf. for instance [18]). Kramer’s formula will not be
considered in this paper, but it will be shortly discussed in [34].

A large part of the approach in this paper is based on asymptotic methods. We will
use repeatedly the asymptotic symbols ∼, � to denote the following:

f ∼ g as x → x0 if and only if lim
x→x0

f (x)

g (x)
= 1,

f � g as x → x0 if and only if lim
x→x0

f (x)

g (x)
= 0.

The plan of the paper is the following. In Sect. 2 we describe the general frame-
work of problems considered in this paper. Section 3 studies a particular chemical
system made of few molecules, yielding bistable behaviour due to the different orders
of magnitude of their coefficients. This section contains also the study of this system
if one particular parameter ε is set to be zero. Section 4 derives the reduced system
that describes the evolution of the system in Sect. 3 if ε → 0+. This section includes
also the description of the (bistable) steady states in that particular regime. Section 5
computes the switching times between the two stable states of the system under con-
sideration for small ε by means of an asymptotic analysis of the corresponding master
equations. Section 6 contains a technical computation of some transition probabili-
ties which has been used in Sect. 4. Last section summarizes the main results of the
paper.

2 General framework: discrete stochastic processes

The type of stochastic molecular dynamics considered in this paper is similar to the one
previously considered in the literature (cf. [1,4,11,26,31,40–42,45]). We summarize
here the main assumptions.
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We will assume that the systems under consideration consist of N different types of
chemical substances. The number of molecules of each chemical species is a random
variable that might change in time as a consequence of the chemical reactions. We are
interested in understanding the dynamics of these stochastic systems in suitable limit
regimes: (1) for the number of molecules of some of the chemical species, in the limit
of large numbers of molecules, or (2) for the number of chemical species, in the limit
of large numbers of species or (3) for suitable choices of large or small coefficients
for some of the reaction rates.

The chemical reactions will be assumed to be due to at most binary collisions
between molecules and with a maximum number of two products in each reaction.
We will not assume that the number of molecules is conserved in the reactions, as it
is common in many of these studies (see for instance [22]). In particular this means
that we will accept the possibility of having reactions not preserving the molecules
like A → ∅ or ∅ → A. We will suppose that in the reactions including the empty set
∅ only one molecule is involved. This does not lose much of the generality because
similar reactions involving more than one molecule could be described by means of
sequences of very fast reactions involving intermediate molecular complexes.

It will be assumed that the environment where the molecules react is well stirred.
Therefore, the spatial dependence of the molecules will be ignored. We will suppose
that the chemical reactions take place according to independent Poisson processes.
Correlation effects between the different reactions will not be taken into account.

The variables needed to describe this type of systems are the number of molecules
of each of the chemical species {n�}N

�=1. Let us denote as A�, � = 1, . . . , N the
different chemicals in the system. The restrictions imposed in the reactions means that
they are of one of the following types:

∅ → A�, K�; A� → ∅, λ� (2.1)

A� + A j → Ak, α�, j;k; Ak → A� + A j , βk;�, j (2.2)

A j → Ak, μ j;k (2.3)

More general forms for the reactions that include also arbitrary collisions have been
considered for instance in [1]. We will consider one specific example in the paper [34]
where one of the reactions contains three molecules on the right hand side. We have
written to the right end of each equation the parameters characterizing the rates of the
chemical reactions for each group of molecules written to the left. More precisely, if
the state of the systems is characterized by the set of numbers {n�}N

�=1 the probability
for unit of time of having each of the five types of reactions in the Eqs. (2.1)–(2.3) is
given respectively by the numbers

K�, λ�n�, α�, j;kn�
(
n j − δ�, j

)
, βk;�, j nk, μ j;kn j (2.4)

where the term δ�, j is just a combinatorial factor that plays a role only if � = j . The
basic function which will be described throughout the paper is the probability of each
of the states of the system and it will be denoted as
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p
(
{n�}N

�=1 , t
)

Notice that from the mathematical point of view p ∈ C
(
R

+;M1
(
N

N∗
))
,where from

now on

N∗ = N ∪ {0} ∪ {∞} (2.5)

and M1
(
N

N∗
)

is the set of probability measures in N
N∗ . Notice in particular that this

implies

p (ξ, t) ≥ 0 for ξ ∈ N
N∗ and

∑

ξ∈N
N∗

p (ξ, t) = 1

As we indicated in the Introduction we will study in this paper very particular criteria
for deterministic behaviour, namely the existence of long switching times in molecular
systems. In particular, systems that tend to just one equilibrium distribution will be
left completely outside of the consideration in this paper.

3 A system with few molecules but with highly specific kinetic coefficients:
general properties

In one of the systems mentioned above, namely the genetic toggle described in [28]
the detailed biochemistry of the system is well known. It turns out that such a system
is not composed of many different chemical species. There are not many molecules
of each of the species either. Nevertheless, this chemical system is able to produce a
clearly distinguishable bistable system.

In this section we will describe a simple abstract example of biochemical network
which illustrate how to obtain bistable systems with long-lived states and with a rel-
atively small number of both chemical species and molecules. This will be achieved
with a choice of chemical reactions acting in very different time scales. This means
that the long lives of the molecular states are built in the chemical coefficients and
characteristic lifetimes of the chemicals involved. In spite of the fact that this mech-
anism may not require the analysis of many molecules it could often be the way in
which biological systems with several molecular states manage to work in a determin-
istic way. Roughly speaking deterministic behaviour would be a consequence of the
high specificity of the molecules involved in the process. More precisely, very large
chemical rates could produce bistability and very long switching times.

3.1 Description of the model

We assume that there are two substances (they could be for instance genes, although
the specific biology of their characters will not be made precise), X1, X2 that can be
activated by a molecule Z in the background. The activation of a molecule Xi triggers
the production of a repressor R that can be attached to a free molecule X j , j 
= i and
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inhibits it. Therefore the molecules Xi can be in the three states, namely free (Xi ),
activated (Xi Z ) and repressed (Xi R). We will denote the activated and repressed
states as Zi and Ri respectively for brevity. The system of reactions that we will use
to describe the system is the following:

∅ � Z , (K ; λ)
Xi + Z � Zi , (α;β)

Zi → Zi + R,
g

ε

R → ∅, μ

ε

Xi + R � Ri ,
(γ
ε

; σ
)

(3.1)

The coefficients are the stochastic reaction rates for the direct and inverse reactions
respectively. In reactions where only the direct reaction takes place only one constant
rate has been written. A small rescaling parameter ε > 0 has been introduced. The
meaning of this parameter is that some of the reactions associated to the repressor R
are much faster than the others. All the numbers K , λ, α, β, g, μ, γ, σ will be assumed
to be positive and of order one. Nevertheless, in order to have a probability density
concentrated in two types of states, we will need some smallness assumption on β. The
reactions in (3.1) are reactions between individual molecules that take place accord-
ing to independent Poisson processes with the rates indicated there. Let us denote
as nZ , nR, nXi , nZi , nRi the number of molecules Z , R, Xi , Xi Z , Xi R respectively.
Notice that nXi = 0 if the molecule Xi is activated or repressed. We then have the
following relations

nXi + nZi + nRi = 1, i = 1, 2 (3.2)

On the other hand we have

nXi , nZi , nRi ∈ {0, 1} (3.3)

The main consequence of (3.2), (3.3) is that the three numbers nXi , nZi , nRi can be
replaced by just one variable of the set

E = {Ri , Xi , Zi }

The remaining variables characterizing the system are the numbers nZ , nR that can
take any nonnegative integer. Therefore, the space of states that characterizes the
system is

X = N
2∗ × E2

where N∗ is as in (2.5).
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In order to write the master equation defining the evolution of the probabilities
associated to the reactions in (3.1) we define some auxiliary operators as follows. Let
us denote ξ ∈ X as

ξ = (nZ , nR, η1, η2)

with nZ , nR ∈ N∗, ηi ∈ E for i = 1, 2. We define the following operators by

T +
Z : X → X , T −

Z : X → X , T +
R : X → X , T −

R : X → X
AZ ,i : X → X , DZ ,i : X → X , AR,i : X → X , DR,i : X → X

T +
Z (nZ , nR , η1, η2) = (nZ + 1, nR , η1, η2) , T −

Z (nZ , nR , η1, η2) = (
(nZ − 1)+ , nR , η1, η2

)

T +
R (nZ , nR , η1, η2) = (nZ , nR + 1, η1, η2) , T −

R (nZ , nR , η1, η2) = (
nZ , (nR − 1)+ , η1, η2

)

Aω,1 (nZ , nR , η1, η2) = (
nZ , nR , Aω,1 (η1) , η2

)
, Aω,2 (nZ , nR , η1, η2) = (

nZ , nR , η1, Aω,2 (η2)
)

Dω,1 (nZ , nR , η1, η2) = (
nZ , nR , Dω,1 (η1) , η2

)
, Dω,2 (nZ , nR , η1, η2) = (

nZ , nR , η1, Dω,2 (η2)
)

(3.4)

where the operators Aω,i , Dω,i are defined in E for ω ∈ {Z , R} by

AZ ,i (Xi ) = Zi , AZ ,i (Zi ) = Zi , AZ ,i (Ri ) = Ri , i = 1, 2

AR,i (Xi ) = Ri , AR,i (Zi ) = Zi , AR,i (Ri ) = Ri , i = 1, 2

DZ ,i (Xi ) = Xi , DZ ,i (Zi ) = Xi , DZ ,i (Ri ) = Ri , i = 1, 2

DR,i (Xi ) = Xi , DR,i (Zi ) = Zi , DR,i (Ri ) = Xi , i = 1, 2 (3.5)

Given ξ = (nZ , nR, η1, η2) ∈ X we define the following functions

nZ : X → N∗; nR : X → N∗; η1 : X → E; η2 : X → E (3.6)

They are defined by means of the corresponding components of ξ . We will also use the
notation nZ j , nX j , nR j to denote functions that have the value 1 if η j is Z j , X j , R j

respectively, or 0 otherwise.
Let us denote as p (ξ, t) the probability of the state ξ at the time t, assuming that

the initial probability distribution is p (ξ, 0) = p0 (ξ).
Using the operators defined in (3.4), (3.5) we can write, using standard proba-

bility methods (cf. [23]), the master equation that characterizes the evolution of the
probability p (ξ, t) in the following way

∂p

∂t
(ξ, t) = f rac1εL1 p (ξ, t)+ L2 p (ξ, t) ≡ Lε p (ξ, t) (3.7)

L1 p (ξ, t) = − (
g

(
nZ1 + nZ2

) + μnR
)

p (ξ, t)+ (
g

(
nZ1 + nZ2

)
p

(
T −

R ξ, t
)

+μ (nR + 1) p
(
T +

R ξ, t
)) −

2∑

j=1

γ nRnX j p (ξ, t)

+
2∑

j=1

γ (nR + 1) nR j p
(
T +

R DR, jξ, t
)

(3.8)
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L2 p (ξ, t) = − (K + λnZ ) p (ξ, t)+ K 1{nZ ≥1} p
(
T −

Z ξ, t
) + λ (nZ + 1) p

(
T +

Z ξ, t
)

−
2∑

j=1

[
αnZ nX j +βnZi

]
p (ξ, t)+

2∑

j=1

[
α (nZ +1) nZ j p

(
T +

Z DZ , jξ, t
)

+βnX j p
(
T −

Z AZ , jξ, t
)]−

2∑

j=1

σnR j p (ξ, t)+
2∑

j=1

σnX j p
(
T −

R AR, jξ, t
)

(3.9)

Notice that we have included in L1 all the fast chemical reactions and in L2 the
reactions that take place in times of order one.

In (3.8), (3.9) we denote as nZ j , nZ , nR, nX j , nR j the corresponding values of
these functions evaluated at the state ξ .

Notice that the system (3.7)–(3.9), although it is linear, can not be solved explicitly
and we will derive information about it using a perturbative method. This analysis will
provide as well information about the structure of the steady states.

3.2 Steady states: the limit case ε = 0

Multiple scale methods for the analysis of stochastic systems with two different scales
have been developed in [11,41,42,45,46]. We will use the type of methods in these
references adapted to the particular problem (3.7)–(3.9).

Our first goal is to study the steady states of (3.7) as ε → 0+. Since reactions
associated to the part L1 of the operator Lε are much faster, it is natural to begin by
considering the steady states associated to the operator L1, more precisely, we will
describe the solutions of the equation

L1 p (ξ) = 0 (3.10)

Notice that, since all the reactions involving change in the value of nZ are contained
in the operator L2 it follows that the variable nZ just plays the role of a parameter in
(3.10). The problem then reduces to a finite system of discrete equations in the variable
nR for the different choices of η1, η2. Most of the resulting discrete equations in nR

are decoupled due to the fact that the operators DR, j only change the values of η j if
they take the value R j .

We then consider the different choices of (η1, η2) ∈ E2.
(1) The case (η1, η2) = (Z1, Z2). The element (Z1, Z2) is not connected to any

other element of E2 by means of the fast reactions. Therefore for ξ = (nZ , nR, Z1, Z2),
(3.10) becomes

− (2g + μnR) p (nR)+ (2gp (nR − 1)+ μ (nR + 1) p (nR + 1)) = 0, (3.11)

where we do not write the dependence of p on the variables nZ , Z1, Z2 just for brevity.
As a rule we will not write in the following the dependence on the variables that just
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play the role of parameters if they are not relevant to the equation under consideration.
Notice that (3.11) can be rewritten as

− J (n + 1)+ J (n) = 0 (3.12)

with

J (n) = −μnp (n)+ 2gp (n − 1) , n ≥ 1

J (0) = 0

and where nR = n. Then J (n) = 0, whence

p (nZ , nR, Z1, Z2) = 1

nR !
(

2g

μ

)nR

p (nZ , 0, Z1, Z2) (3.13)

This yields the solution of (3.10) if (η1, η2) = (Z1, Z2)

(2) The case (η1, η2) = (Z1, R2). These states are also disconnected from the other
equations by means of the reactions in L1. Therefore for ξ = (nZ , nR, Z1, X2), (3.10)
becomes

− (g + μnR) p (nR)+ (gp (nR − 1)+ μ (nR + 1) p (nR + 1))− γ nR p (nR) = 0

(3.14)

The solutions of (3.14) cannot be computed in a closed form due to the fact that this
equation cannot be written as a conservation law. However (3.14) is a second order
difference equation whose solutions can be studied easily. The main properties of its
solutions are in the following lemma.

Lemma 1 For any set of positive numbers g, μ, γ there exists a unique solution
ϕ : N∗ → R of the difference equation

− (g + μn) ϕ (n)+ (gϕ (n − 1)+ μ (n + 1) ϕ (n + 1))− γ nϕ (n) = 0,

n = 1, 2, . . . (3.15)

such that

ϕ (0) = 1 (3.16)

lim
n→∞ϕ (n) = 0. (3.17)

Moreover, ϕ (n) is decreasing and there exists K = K (g, μ, γ ) > 0 such that

ϕ (n) ∼ K

n!
(

g

μ+ γ

)n

as n → ∞.
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Proof Equation (3.15) can be written as an iterative equation

ϕ (n + 1) = 1

μ (n + 1)

[−gϕ (n − 1)+ (γ n + g + μn) ϕ (n)
]
, n = 1, 2, . . .

This can be solved uniquely in terms of the values of ϕ(0), ϕ (1). Therefore the space
of solutions of (3.15) is two-dimensional. The methods of computing the asymptot-
ics of the solutions of second order linear difference equations are well established
(cf. [8]). It turns out that there exist two linearly independent solutions of (3.15) that
will be denoted as ϕ1(n), ϕ2(n)with the following asymptotic behaviours respectively

ϕ1 (n) ∼ 1

n!
(

g

μ+ γ

)n

n
− γ g
(γ+μ)2 as n → ∞ (3.18)

ϕ2 (n) ∼
(
μ+ γ

μ

)n

n
−1− gμ

(γ+μ)2 + g
(γ+μ) as n → ∞ (3.19)

Since only one of the asymptotics (3.18), (3.19) yields decay of the solutions as n → ∞
it follows that there is at most one solution of (3.15)–(3.17). Notice that, assuming
(3.16), the value of ϕ (1) determines uniquely the function ϕ (n). In order to prove the
existence of one value of ϕ (1) yielding (3.16) and (3.17) we use a shooting argument.
To this end, we rewrite (3.15) as

[μ (n + 1) ϕ (n + 1)− gϕ (n)] − [μnϕ (n)− gϕ (n − 1)] = γ nϕ (n) (3.20)

Suppose first that ϕ (1) > gϕ(0)
μ

= g
μ

. We then claim that limn→∞ ϕ (n) = ∞. Indeed,
using (3.20) with n = 1, we obtain [2μϕ (2)− gϕ (1)] > 0 whence ϕ (2) > 0. An
induction argument then yields μ (n + 1) ϕ (n + 1)− gϕ (n) > 0 for every n ≥ 0 and
the corresponding solution ϕ (n) satisfies μ (n + 1) ϕ (n + 1) − gϕ (n) > γ nϕ (n).
Then ϕ (n)  ϕ1 (n) as n → ∞ and therefore ϕ (n) ∼ K1ϕ2 (n) as n → ∞ for some
K1 > 0, whence the claim follows.

Let us assume now that ϕ (1) < 0. We claim that in such a case limn→∞ ϕ (n) =
−∞. Indeed, our assumption on ϕ (1) implies [μϕ (1)− gϕ (0)] < 0 and (3.20)
yields [2μϕ (2)− gϕ (1)] < 0 and ϕ (2) < 0. Arguing by induction we obtain
[μnϕ (n)− gϕ (n − 1)] < 0 for any n ≥ 1,whence [μ (n + 1) ϕ (n + 1)− gϕ (n)] <

γ nϕ (n). Then |ϕ (n)| > C
n

(
γ
μ

)n
for some C > 0. Due to (3.18), (3.19) we can have

lim supn→∞ |ϕ (n)| bounded if ϕ (n) = C∗ϕ1 (n) , but since this is not the case, it then
follows that limn→∞ ϕ (n) = −∞.

Therefore, by continuity there exists a value of ϕ (1) ∈
[
0, g

μ

]
such that

ϕ (n) ∼ Kϕ1 (n) as n → ∞ (3.21)

for some K ∈ R. We now want to show that K > 0. We first notice that K 
= 0, since
otherwise ϕ (n) = 0. Suppose that K < 0. Then we would have
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J (n) = [μ (n + 1) ϕ (n + 1)− gϕ (n)]

= K g

n!
(

g

μ+ γ

)n [
μ

μ+ γ
− 1

]
n

− γ g
(γ+μ)2 (1 + o (1))

as n → ∞. Since K < 0 we then have J (n) > 0 for large n. On the other hand
J (0) < 0. Then, there exists at least one value n0 ≥ 1 such that J (n0 − 1) < 0 and
J (n0) ≥ 0. Due to (3.20) we would have ϕ (n0) > 0. Therefore ϕ (n0 + 1) > 0 and
it would follow by induction that J (n) > 0 for any n ≥ n0, whence (3.21) would not
take place. This contradiction implies that K > 0. ��
Remark 2 It is possible to find an explicit formula for the solutions of (3.15 )–(3.17),
but this involves an integral expression of hypergeometric functions that are not par-
ticularly illuminating. Therefore, we prefered to prove Lemma 1 with the argument
above which could be used for more general classes of coefficients.

Remark 3 Notice that Lemma 1 and (3.14) yield

p (nZ , nR, Z1, X2) = p (nZ , 0, Z1, X2) ϕ (nR) (3.22)

(3) The case (η1, η2) = (R1, Z2). It can be studied exactly as the previous case by
symmetry. Moreover, we have also

p (nZ , nR, X1, Z2) = p (nZ , 0, X1, Z2) ϕ (nR) (3.23)

(4) The case (η1, η2) = (X1, X2). In this case (3.10) reduces to

p (nR + 1) = 2γ + μ

μ

nR

nR + 1
p (nR) , nR ≥ 0 (3.24)

The only solutions of (3.24) with finite mass are

p (nZ , nR, X1, X2) = p (nZ , 0, X1, X2) δnR ,0 (3.25)

(5) The case (η1, η2) = (X1, R2). Equation (3.10) takes the form

− (μ+ γ ) nR p (nR, X1, R2)+ μ (nR + 1) p (nR + 1, X1, R2)

+γ (nR + 1) p (nR + 1, X1, X2) = 0 (3.26)

Taking into account (3.25) we obtain p (nZ , nR + 1, X1, X2) = 0 and (3.26) becomes

− (μ+ γ ) nR p (nR, X1, R2)+ μ (nR + 1) p (nR + 1, X1, R2) = 0

The only solutions of this equation with finite mass are

p (nZ , nR, X1, R2) = p (nZ , 0, X1, R2) δnR ,0 (3.27)
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(6) The case (η1, η2) = (R1, X2). A completely symmetric argument yields

p (nZ , nR, R1, X2) = p (nZ , 0, R1, X2) δnR ,0 (3.28)

(7) The case (η1, η2) = (R1, R2). In this case (3.10) becomes

−μnR p (nR)+ μ (nR + 1) p (nR + 1)+ γ (nR + 1)
[

p
(
T +

R DR,1ξ
)

+p
(
T +

R DR,2ξ
)] = 0 (3.29)

Using the fact that p
(
T +

R DR,1ξ
) = p

(
T +

R DR,2ξ
) = 0 [cf. (3.27), (3.28)] we

obtain

p (nR + 1) = nR

nR + 1
p (nR)

The general solution of this equation has the form

p (nR) = K1δnR ,0 + K2

nR

(
1 − δnR ,0

)

for suitable constants K1, K2. Therefore, the solutions of (3.29) with finite mass have
the form

p (nZ , nR, R1, R2) = p (nZ , 0, R1, R2) δnR ,0 (3.30)

(8) The case (η1, η2) = (Z1, R2). Equation (3.10) becomes

− (g + μnR) p (ξ)+ (
gp

(
T −

R ξ
) + μ (nR + 1) p

(
T +

R ξ
)) + γ (nR + 1)

×p
(
T +

R DR,2ξ
) = 0

Then, using p
(
T +

R DR,2ξ
) = p (nZ , nR + 1, Z1, X2) = p (nZ , 0, Z1, X2) ϕ

(nR + 1) [cf. (3.22)] we obtain

− (g + μnR) p (nR, Z1, R2)+ (gp (nR − 1, Z1, R2)

+μ (nR + 1) p (nR + 1, Z1, R2)) (3.31)

+ γ (nR + 1) p (nZ , 0, Z1, X2) ϕ (nR + 1) = 0

We can rewrite (3.31) as

J (nR)− J (nR + 1)+ γ (nR + 1) p (nZ , 0, Z1, X2) ϕ (nR + 1) = 0, nR ≥ 0

(3.32)

where

J (nR) = −μnR p (nR, Z1, R2)+ gp (nR − 1, Z1, R2) , nR ≥ 1
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Equation (3.32) must be solved with the boundary condition J (0) = 0. Adding
(3.32) for nR ≥ 0 we obtain

0 = γ p (nZ , 0, X1, Z2)

∞∑

nR=1

nRϕ (nR)

and since
∑∞

nR=1 nRϕ (nR) > 0, it then follows that

p (nZ , 0, X1, Z2) = 0 (3.33)

(9) The case (η1, η2) = (R1, Z2). Similarly, we obtain by symmetry

p (nZ , 0, Z1, X2) = 0 (3.34)

The system of equations (3.13), (3.22), (3.23), (3.25), (3.27), (3.28) provides the
most general solution of (3.10) having probability one.

4 On the dynamics of the process given by (3.7) for ε → 0: reduced system

We recall that our goal is to describe the evolution of the stochastic process described
by means of (3.7) for small ε. The key idea of our (formal) analysis is the following. The
operator Lε consists of two pieces. The part 1

ε
L1 acts in times of order ε. Therefore,

the corresponding distribution probability in the space of states X is then driven in
times of order ε to one of the quasi-steady-states associated to the operator L1. Such
a set of equilibria is a convex set given by (3.13), (3.22), (3.23), (3.25), (3.27), (3.28)
and it will be denoted as Ms,1.

On the other hand, the part L2 of the operator Lε acts in times of order one. Since the
part of the evolution induced by 1

ε
L1 is much faster we can assume that the dynamics

induced by L2 produces transitions between the quasi-steady-states in Ms,1. Notice
that this approach allows us to deduce a reduced dynamics much simpler than the
original one. This approximation, however, is valid for times t of order one. A similar
idea of computing reduced dynamics for two scale stochastic processes has been used
in [45].

We describe in Fig. 1 the transitions that can take place between the different
elements of E2. Notice that in Fig. 1 we have classified all possible transitions in three
possible classes. The transitions represented by continuous arrows take place in times
of order ε. The transitions represented by dashed arrows take place in times of order
one. Finally, the transitions represented by dotted arrows, take place in times of order
one, but they are extremely unlikely, because they have as starting point a short lived
state, with a lifetime of order ε.

The set of quasi-steady-states Ms,1 is a convex set generated by convex com-
binations of the following eight functions, which are concentrated only on the sets
S(η1,η2) = {(nZ , η1, η2)}. We just write the terms of the functions P that are different
from zero [see (3.13), (3.22), (3.23), (3.25), (3.27), (3.28)]
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Fig. 1 Solid arrow fast, dashed
arrow slow, dotted arrow slow
and extremely unlikely

(nZ , R1, Z2) : P (nR) = 1

(nR)!
(

g

μ

)nR

e− g
μ

(nZ , R1, X2) : P (nR) = δnR ,0

(nZ , R1, R2) : P (nR) = δnR ,0

(nZ , X1, X2) : P (nR) = δnR ,0 (4.1)

(nZ , X1, R2) : P (nR) = δnR ,0

(nZ , Z1, Z2) : P (nR) = 1

(nR)!
(

2g

μ

)nR

e− 2g
μ

(nZ , Z1, R2) : P (nR) = 1

(nR)!
(

g

μ

)nR

e− g
μ .

Notice that the family of states for the reduced system is

(A, nR) ∈ F × N∗

where

A ∈ F = {(R1, Z2) , (R1, X2) , (R1, R2) , (X1, X2) , (X1, R2) , (Z1, Z2) , (Z1, R2)}

Notice that F is smaller than E2 due to the fact that the states with (X1, Z2) , (Z1, X2)

disappear in times of order ε. On the other hand, in the subset of F given by
{(R1, R2) , (R1, X2) , (X1, R2) , (X1, X2)} it is possible to have only nR = 0, since
otherwise the R′s would combine with Xi or desintegrate in times of order ε too. In
other words, the fast transitions indicated in Fig. 1 having as starting point the states
(R1, X2) , (X1, X2) , (X1, R2) can take place only if nR 
= 0. Therefore, the state of
the system can remain during times of order one at the states labeled by those elements
of F if nR = 0.

We now compute the transition probabilities between the states given in (4.1) in time
scales of order one, or more precisely in times δt satisfying ε � δt � 1. During these
time scales we can have with probability very close to one only one slow transition
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Fig. 2 Dashed arrow one slow
transition and arbitrarily many
fast

combined with arbitrarily many fast transitions. The list of admissible transitions, with
the corresponding probabilities, for the reduced Markov process is the following

X1 X2 →
{

R1 Z2 : αnZ

Z1 R2 : αnZ
, Z1 Z2 →

{
Z1 R2 : β
R1 Z2 : β , R1 R2 →

{
X1 R2 : σμ

μ+γ
R1 X2 : σμ

μ+γ

R1 X2 →
⎧
⎨

⎩

R1 Z2 : αnZ

X1 X2 : σμ
μ+2γ

X1 R2 : σγ
μ+2γ

, X1 R2 →
⎧
⎨

⎩

Z1 R2 : αnZ

X1 X2 : σμ
μ+2γ

R1 X2 : σγ
μ+2γ

R1 Z2 →
{

R1 X2 : β�
R1 R2 : β (1 − �)

, Z1 R2 →
{

X1 R2 : β�
R1 R2 : β (1 − �)

(4.2)

where

� =
∞∑

nR=0

1

(nR)!

(
g
μ

)nR
e− g

μ

∏nR
k=1

(
1 + γ

μ
· k

) (4.3)

We have represented in the Fig. 2 the set of states in F , as well as the possible
transitions between them in time scales of order one. The details of these computations
are included in Sect. 6. The computation of some of the probabilities in (4.2) requires
some care, because all possible ways of combining a slow transition with many fast
transitions must be taken into account. The details of these computation are given in
Sect. 6. It is relevant to remark (cf. Sect. 6) that � < 1. It is also important to remark
that in time scales where t is of order one, the state Z1 Z2 is transient, because there
are no transitions which can bring the state of the system to it.

The equation describing the evolution of the probabilities f (η1, η2, nZ , t), the
solution of the reduced model, which evolve according to the transition probabilities
(4.2) are the following ones

ft (R1, R2, nZ ) = L ( f ) (R1, R2, nZ )− 2σμ

μ+ γ
f (R1, R2, nZ )

+ β (1 − �) [ f (R1, Z2, nZ )+ f (Z1, R2, nZ )]
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ft (X1, R2, nZ ) = L ( f ) (X1, R2, nZ )−
(
αnZ + σ (μ+ γ )

μ+ 2γ

)
f (X1, R2, nZ )

+ σγ

μ+ 2γ
f (R1, X2, nZ )+ σμ

μ+ γ
f (R1, R2, nZ )

+ β�1{nZ ≥1} f (Z1, R2, nZ − 1)

ft (R1, X2, nZ ) = L ( f ) (R1, X2, nZ )−
(
αnZ + σ (μ+ γ )

μ+ 2γ

)
f (R1, X2, nZ )

+ σγ

μ+ 2γ
f (X1, R2, nZ )+ σμ

μ+ γ
f (R1, R2, nZ )

+ β�1{nZ ≥1} f (R1, Z2, nZ − 1)

ft (Z1, R2, nZ ) = L ( f ) (Z1, R2, nZ )− β f (Z1, R2, nZ )+ α (nZ + 1) f (X1, R2, nZ + 1)

+ β1{nZ ≥1} f (Z1, Z2, nZ − 1)+ α (nZ + 1) f (X1, X2, nZ + 1)

ft (R1, Z2, nZ ) = L ( f ) (R1, Z2, nZ )− β f (R1, Z2, nZ )+ α (nZ + 1) f (R1, X2, nZ + 1)

+ β1{nZ ≥1} f (Z1, Z2, nZ − 1)+ α (nZ + 1) f (X1, X2, nZ + 1)

ft (X1, X2, nZ ) = L ( f ) (X1, X2, nZ )− 2αnZ f (X1, X2, nZ )

+ σμ

μ+ 2γ
[ f (X1, R2, nZ )+ f (R1, X2, nZ )]

ft (Z1, Z2, nZ ) = L ( f ) (Z1, Z2, nZ )− 2β f (Z1, Z2, nZ ) (4.4)

where

L ( f ) (η1, η2, nZ ) = − (K + λnZ ) f (η1, η2, nZ )+ λ (nZ + 1) f (η1, η2, nZ + 1)

+K 1{nZ ≥1} f (η1, η2, nZ − 1) (4.5)

4.1 Equilibrium distribution for the reduced system in the limit β → 0

There are no well defined peaks for the stationary solutions of the reduced system (4.4)
if all the transition probabilities are of order one. Therefore, we will assume that one
of the coefficients is small, in order to obtain a clear bistable system. More precisely,
we will assume that β > 0 is sufficiently small. In the original chemical system this
just means that the deactivation reaction for the complex Z Xi is slower than the other
reactions.

Therefore, we will study asympotic behaviours for the bistability in the regime of
ε → 0 and β → 0 in the following subsections.

We will need a general solvability result for a class of problems that will be used
repeatedly in the following arguments.

Lemma 4 Suppose that A > 0 and that the operator L ( f ) is defined as in (4.5).
Assume that
{g (nZ ) | nz = 0, 1, 2, . . .} is a sequence satisfying

∑∞
nZ =0 |g (nZ )| < ∞. Then, there

exists a unique solution of the equation

L ( f ) (nZ )− A f (nZ )+ g (nZ ) = 0, nZ = 0, 1, 2, 3, . . . . (4.6)

satisfying
∑∞

nZ =0 | f (nZ )| < ∞.
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Proof Equation (4.6) is a difference equation with a one-parameter family of solutions
which can be parametrized using f (0) , since f (1) is determined by the equation in
(4.6) with nZ = 0 due to the definition of L ( f ) in (4.5). The operator L ( f ) can be
written in the divergence form for nZ ≥ 1 :

L ( f ) (nZ ) = ϕ (nZ + 1)− ϕ (nZ )

where

ϕ (nZ ) = λnZ f (nZ )− K f (nZ − 1)

We can then argue as in the proof of Lemma 1 to show that f (nZ ) → +∞ as
nZ → ∞ if f (0) is positive, sufficiently large and f (nZ ) → −∞ as nZ → ∞ if
f (0) is negative and | f (0)| are sufficiently large. We can then argue as in the proof
of Lemma 1 to show that there exist a value f (0) such that the corresponding solution
f (nZ ) remains bounded. A detailed analysis of the asymptotics of f (nZ ) using the
methods in [8] shows

∑∞
nZ =0 | f (nZ )| < ∞. The uniqueness of this solution follows

from Maximum Principle Argument. ��
We now proceed to study the steady states of (4.4) with β > 0. We first notice that,

since
∑∞

nR=0 L ( f ) (Z1, Z2, nZ ) = 0, the steady states satisfy

f (Z1, Z2, nZ ) = 0 (4.7)

for any β > 0.
In order to compute the asymptotics of the steady states of (4.4) we compute first the

steady states withβ = 0. It is possible to have such steady states with f (Z1, Z2, nZ ) 
=
0, but, since any positive β implies (4.7) we will restrict our analysis to the steady
states satisfying this identity. The steady states satisfying (4.7) are:

f (η1, η2, nZ ) = 0 for (η1, η2) /∈ {(R1, Z2) , (Z1, R2)} (4.8)

f0 (R1, Z2, nZ ) = A

nZ !
(

K

λ

)nZ

e− K
λ f0 (Z1, R2, nZ ) = B

nZ !
(

K

λ

)nZ

e− K
λ ,

A + B = 1, A ≥ 0, B ≥ 0, (4.9)

where A and B will be determined in the analysis that follows.
We now compute the steady states associated to (4.4) using a perturbative argument

for β → 0. We obtain that f (R1, R2, nZ ) is of order β and it can be computed to this
order solving the equation

0 = L ( f ) (R1, R2, nZ )− 2σμ

μ+ γ
f (R1, R2, nZ )

+β (1 − �) [ f0 (R1, Z2, nZ )+ f0 (Z1, R2, nZ )] (4.10)
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where the functions f0 are as in (4.9). Notice that (4.10) has a unique solution due to
Lemma 4. Moreover, since

[ f0 (R1, Z2, nZ )+ f0 (Z1, R2, nZ )] = 1

nZ !
(

K

λ

)nZ

e− K
λ

it follows that f (R1, R2, nZ ) is independent of the specific values of A, B, at least
to order β.

On the other hand, we can compute the functions f (X1, R2, nZ ) , f (R1, X2, nZ )
to order β using the equations

0 = L ( f ) (X1, R2, nZ )−
(
αnZ + σ (μ+ γ )

μ+ 2γ

)
f (X1, R2, nZ )+ σγ

μ+ 2γ
f (R1, X2, nZ )

+ σμ

μ+ γ
f (R1, R2, nZ )+ β�1{nZ ≥1} f0 (Z1, R2, nZ − 1) (4.11)

0 = L ( f ) (R1, X2, nZ )−
(
αnZ + σ (μ+ γ )

μ+ 2γ

)
f (R1, X2, nZ )+ σγ

μ+ 2γ
f (X1, R2, nZ )

+ σμ

μ+ γ
f (R1, R2, nZ )+ β�1{nZ ≥1} f0 (R1, Z2, nZ − 1) (4.12)

Adding (4.11), (4.12) we obtain

0 = L (�) (X1, R2, nZ )−
(
αnZ + σμ

μ+ 2γ

)
�(X1, R2, nZ )

+ 2σμ

μ+ γ

f

β
(R1, R2, nZ )+ �1{nZ ≥1} [ f0 (Z1, R2, nZ − 1)+ f0 (R1, Z2, nZ − 1)] ,

(4.13)

where

β� (nZ ) = f (X1, R2, nZ )+ f (R1, X2, nZ ) (4.14)

Using the fact that f (R1, R2, nZ ) can be solved to order β using (4.10) we can
obtain also a solution � of (4.13) using Lemma 4. Since neither f (R1, R2, nZ ) nor
[ f0 (Z1, R2, nZ )+ f0 (R1, Z2, nZ )] depends on the specific choice of A, B the same
happens for the function �(nZ ).

We can now compute a closed equation for f (X1, R2, nZ ) eliminating f (R1,

X2, nZ ) from (4.11) using (4.14). Then

0 = L ( f ) (X1, R2, nZ )− (αnZ + σ) f (X1, R2, nZ )+ σγ

μ+ 2γ
� (nZ ) (4.15)

+ σμ

μ+ γ
f (R1, R2, nZ )+ β�1{nZ ≥1} f0 (Z1, R2, nZ − 1)

and we have a similar equation for f (R1, X2, nZ ). We can then prove existence
and uniqueness of f (R1, X2, nZ ) using again Lemma 4. Notice that the functions
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f (X1, R2, nZ ) , f (R1, X2, nZ ) depend on the choice of the values A, B. More
precisely, we can write these functions to order β as

f (X1, R2, nZ ) = β [ϕ1 (nZ )+ Bϕ2 (nZ )] , f (R1, X2, nZ ) = β [ϕ1 (nZ )+ Aϕ2 (nZ )]

(4.16)

where ϕ1, ϕ2 are the unique solutions of

L (ϕ1) (nZ )− (αnZ + σ) ϕ1 (nZ )+ σγ

μ+ 2γ
� (nZ )+ σμ

μ+ γ

f (R1, R2, nZ )

β
= 0

(4.17)

L (ϕ2) (nZ )− (αnZ + σ) ϕ2 (nZ )+ �1{nZ ≥1}
1

(nZ − 1)!
(

K

λ

)nZ −1

e− K
λ = 0

(4.18)

We can now compute f (X1, X2, nZ ) to order β solving

0 = L ( f ) (X1, X2, nZ )− 2αnZ f (X1, X2, nZ )+ σμβ

μ+ 2γ
� (nZ ) (4.19)

where � is as in (4.14). Since � is independent of the specific choice of A, B the
same happens for f (X1, X2, nZ ).

Finally we can use the equations for f (Z1, R2, nZ ) , f (R1, Z2, nZ ) to determine
the values of A, B. Adding these equations with respect to nZ we obtain up to order β

0 = −β
∞∑

nZ =0

f0 (Z1, R2, nZ )+ α

∞∑

nZ =1

nZ f (X1, R2, nZ )+ β

∞∑

nZ =0

f (Z1, Z2, nZ )

+α
∞∑

nZ =1

nZ f (X1, X2, nZ )

0 = −β
∞∑

nZ =0

f0 (R1, Z2, nZ )+ α

∞∑

nZ =1

nZ f (R1, X2, nZ )+ β

∞∑

nZ =0

f (Z1, Z2, nZ )

+α
∞∑

nZ =1

nZ f (X1, X2, nZ )

Using now (4.9), (4.16) we obtain

⎡

⎣
∞∑

nZ =0

e− K
λ

nZ !
(

K

λ

)nZ

− α

∞∑

nZ =1

nZϕ2 (nZ )

⎤

⎦ B = D (4.20)

⎡

⎣
∞∑

nZ =0

e− K
λ

nZ !
(

K

λ

)nZ

− α

∞∑

nZ =1

nZϕ2 (nZ )

⎤

⎦ A = D (4.21)
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where

D = α

∞∑

nZ =1

nZϕ1 (nZ )+
∞∑

nZ =0

f (Z1, Z2, nZ )+ α

β

∞∑

nZ =1

nZ f (X1, X2, nZ )

is independent of the specific choice of A, B. Adding in (4.18) with respect to nZ we
obtain

α

∞∑

nZ =1

nZϕ2 (nZ )+ σ

∞∑

nZ =0

ϕ2 (nZ ) = �

∞∑

nZ =1

1

nZ !
(

K

λ

)nZ

e− K
λ

whence, using that � < 1

α

∞∑

nZ =1

nZϕ2 (nZ ) < �

∞∑

nZ =1

1

nZ !
(

K

λ

)nZ

e− K
λ ≤

∞∑

nZ =1

1

nZ !
(

K

λ

)nZ

e− K
λ

Therefore it follows from (4.20), (4.21) that

A = B = 1

2

It is worthwhile to remark that a similar selection of the probability 1
2 has been obtained

in the alignment models studied in [47] for a different type of model, namely a kinetic
model, and where the term responsible for the selection is the nondeterministic char-
acter of the alignment mechanisms. The results in [47] contrast the ones in [38] where
the deterministic character of the dynamics there does not provide any selection mech-
anism among the two states of the system.

5 On the computation of the switching times

As we have seen in Sect. 4.1 the equilibrium distribution for the system described by
the system of reactions (3.1) is concentrated in two different peaks that correspond
to two different states of activation of the molecules involved, if ε and β are small.
In systems with many molecules it is common to use Kramers’ formula in order
to compute the switching times between two different regions of high probability.
Kramers’ formula, however cannot be used to compute switching times for systems
of molecules described by means of (3.7), (3.8), (3.9). Nevertheless, the methods to
compute the probability distributions for the escape times of transient states of Markov
chains are well established (cf. [23]). We recall them with a simple example and adapt
it later to the study of our specific problem.
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5.1 Analysis of a simplified model

We consider the following simple model with three molecular states

A � λ
ρ B →ω C (5.1)

More precisely, we assume that the system described by means of (5.1) can be just in
one of the three states A, B, C,with probabilities pA, pB, pC respectively. Suppose
that the system (5.1) is initially at state A and we define a stochastic variable ζ as
the time that it takes for the system (5.1) to change its state to C . Notice that C is an
absorbing state for this Markov chain. The evolution of such transition probabilities
is given by the system of equations

dpA

dt
= −λpA + ρpB

dpB

dt
= λpA − (ρ + ω) pB

dpC

dt
= ωpB (5.2)

with pA + pB + pC = 1. We then have

p ({ζ > t}) = 1 − pC (t)

p ({ζ ≤ t}) = pC (t)

Therefore, the probability density ϕ associated to the stochastic variable τ is

ϕ (τ) = dpC (τ )

dτ
= ωpB (τ ) , p ({a ≤ τ ≤ b}) =

τ∫

a

ϕ (s) ds

where (pA, pB, pC ) (t) is obtained by solving (5.2) with initial data (pA, pB, pC )

(0) = (1, 0, 0). Then we have

(
pA (t)
pB (t)

)
=

exp
(
− (λ+ω+ρ)t

2

)

�

( 1
2 (λ− ω − ρ +�)

−λ
)

exp

(
−�t

2

)

−
exp

(
− (λ+ω+ρ)t

2

)

�

( 1
2 (λ− ω − ρ −�)

−λ
)

exp

(
�t

2

)

with

� =
√
λ2 − 2λω + 2λρ + ω2 + 2ωρ + ρ2

It then follows that

pC (t) = 1 − pA (t)− pB (t) = 1 −
exp

(
− (λ+ω+ρ)t

2

)

�[
(ω + ρ) cosh

(
�t

2

)
+ (λ+�) sinh

(
�t

2

)
− λ exp

(
−�t

2

)]
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Therefore, we obtain that

φ (t) = dpC (τ )

dτ

=
exp

(
− (λ+ω+ρ)t

2

)

2�

[
(−λ (λ− 3ω + ρ +�)) cosh

(
�t

2

)

+ (λ (λ+ ω + ρ +�)) sinh

(
�t

2

)
− λ (λ+ ω + ρ +�) exp

(
−�t

2

)]

5.2 Switching times for the reduced system (4.4)

We now use a similar argument in order to compute the switching times for the reduced
system (4.4). Since the number of variables involved (and possibilities) is much larger
a more precise definition of the switching time is needed. We will develop a procedure
to compute such switching times in the limit β → 0, something that will allow us to
use asymptotic methods.

It has been obtained in Sect. 4.1 that forβ close to zero the steady states distributions
are concentrated near the two states (Z1, R2) and (R1, Z2) with the values of nZ at
equilibrium. We define a switching time variable τ by means of the time that it takes
for the distribution of molecules to arrive for the first time to the state (η1, η2) =
(R1, Z2) assuming that the initial distribution of molecules is given by the probability
distribution

f (Z1, R2, nZ ) = 1

nZ !
(

K

λ

)nZ

e− K
λ , f (η1, η2, nZ ) = 0 if (η1, η2) 
= (Z1, R2)

(5.3)

It would be possible to assume other initial distributions for f (Z1, R2, nZ ), for
instance f (Z1, R2, nZ ) = δnZ ,� for some fixed �. Since the characteristic time scale
for the variation of nZ is much shorter than the switching time scale all these definitions
would give similar results for small β → 0. We will then assume that the initial
molecule distribution is given by (5.3).

In order to compute the switching time we need to solve the system (4.4) with
f (R1, Z2, nZ ) = 0 that amounts to assuming that the state (R1, Z2) is an absorbing
one for the system. Moreover, the function f (Z1, Z2, nZ ) is decoupled in the resulting
system, and its effect can be ignored, since in the initial state f (Z1, Z2, nZ ) = 0.
Then (4.4) becomes

ft (R1, R2, nZ ) = L ( f ) (R1, R2, nZ )− 2σμ

μ+ γ
f (R1, R2, nZ )+ β (1 − �) f (Z1, R2, nZ )

ft (X1, R2, nZ ) = L ( f ) (X1, R2, nZ )−
(
αnZ + σ (μ+ γ )

μ+ 2γ

)
f (X1, R2, nZ )

+ σγ

μ+ 2γ
f (R1, X2, nZ )+ σμ

μ+ γ
f (R1, R2, nZ )

+ β�1{nZ ≥1} f (Z1, R2, nZ − 1)
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ft (R1, X2, nZ ) = L ( f ) (R1, X2, nZ )−
(
αnZ + σ (μ+ γ )

μ+ 2γ

)
f (R1, X2, nZ )

+ σγ

μ+ 2γ
f (X1, R2, nZ )+ σμ

μ+ γ
f (R1, R2, nZ )

ft (Z1, R2, nZ ) = L ( f ) (Z1, R2, nZ )− β f (Z1, R2, nZ )+ α (nZ + 1) f (X1, R2, nZ + 1)

+ α (nZ + 1) f (X1, X2, nZ + 1)

ft (X1, X2, nZ ) = L ( f ) (X1, X2, nZ )− 2αnZ f (X1, X2, nZ )

+ σμ

μ+ 2γ
[ f (X1, R2, nZ )+ f (R1, X2, nZ )] (5.4)

This system must be solved with initial data (5.3). Then, the probability of the state
of the system not reaching (η1, η2) = (R1, Z2) at time t is

∑

{(η1,η2) 
=(R1,Z2)}

∞∑

nZ =0

f (η1, η2, nZ , t)

This probability is the same as P ({ζ > t}). Then, the probability density that describes
the probability distribution is given by

ϕ (t) = −
∑

{(η1,η2) 
=(R1,Z2)}

∞∑

nZ =0

∂ f

∂t
(η1, η2, nZ , t) (5.5)

Our goal is to solve the system (5.4) with initial data (5.3) for small β. Kramers’
formula is not suitable for this problem. Nevertheless, the structure of the problem
suggests to look for solutions depending on two time scales, or more precisely, having
the form

f (η1, η2, nZ , t) = F (η1, η2, nZ , t, τ ) , τ = βt (5.6)

F (η1, η2, nZ , t, τ ) = F0 (η1, η2, nZ , t, τ )+ βF1 (η1, η2, nZ , t, τ )+ · · · (5.7)

where, as usual in problems with multiple scales, the dependence of the functions
F0, F1 on the variable τ is made in order to avoid the growth of these functions in the
variable t .

Keeping the leading order terms (of order 1) we obtain

F0,t (R1, R2, nZ ) = L (F0) (R1, R2, nZ )− 2σμ

μ+ γ
F0 (R1, R2, nZ )

F0,t (X1, R2, nZ ) = L (F0) (X1, R2, nZ )−
(
αnZ + σ (μ+ γ )

μ+ 2γ

)
F0 (X1, R2, nZ )

+ σγ

μ+ 2γ
F0 (R1, X2, nZ )+ σμ

μ+ γ
F0 (R1, R2, nZ )

F0,t (R1, X2, nZ ) = L (F0) (R1, X2, nZ )−
(
αnZ + σ (μ+ γ )

μ+ 2γ

)
F0 (R1, X2, nZ )

+ σγ

μ+ 2γ
F0 (X1, R2, nZ )+ σμ

μ+ γ
F0 (R1, R2, nZ )
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F0,t (Z1, R2, nZ ) = L (F0) (Z1, R2, nZ )+ α (nZ + 1) F0 (X1, R2, nZ + 1)

+ α (nZ + 1) F0 (X1, X2, nZ + 1)

F0,t (X1, X2, nZ ) = L (F0) (X1, X2, nZ )− 2αnZ F0 (X1, X2, nZ )

+ σμ

μ+ 2γ
[F0 (X1, R2, nZ )+ F0 (R1, X2, nZ )]

It is readily seen that the functions F0 (R1, R2, nZ ) , [F0 (R1, X2, nZ ) + F0
(X1, R2, nZ )], F0 (X1, X2, nZ ) decrease exponentially in time scales of order one.
In particular this implies also that F0 (R1, X2, nZ ) and F0 (X1, R2, nZ ) decrease
exponentially. On the other hand F0 (Z1, R2, nZ ) approaches to a solution of
L (F0) (Z1, R2, nZ ) = 0 for these time scales. Therefore, in the long time scale τ
we can assume that F0 (η1, η2, nZ ) = 0 for (η1, η2) 
= (Z1, R2). In order to compute
the rate of change of F0 (Z1, R2, nZ ) in the time scale τ we need to compute the equa-
tions for F1 (η1, η2, nZ ) , (η1, η2) 
= (Z1, R2). To this end, we just keep the terms of
order β that result from plugging (5.7) into (5.4). We then obtain

F1,t (R1, R2, nZ ) = L (F1) (R1, R2, nZ )− 2σμ

μ+ γ
F1 (R1, R2, nZ )

+ (1 − �) F0 (Z1, R2, nZ )

F1,t (X1, R2, nZ ) = L (F1) (X1, R2, nZ )−
(
αnZ + σ (μ+ γ )

μ+ 2γ

)
F1 (X1, R2, nZ )

+ σγβ

μ+ 2γ
F1 (R1, X2, nZ )+ σμ

μ+ γ
F1 (R1, R2, nZ )

+ �1{nZ ≥1}F0 (Z1, R2, nZ − 1)

F1,t (R1, X2, nZ ) = L (F1) (R1, X2, nZ )−
(
αnZ + σ (μ+ γ )

μ+ 2γ

)
F1 (R1, X2, nZ )

+ σγ

μ+ 2γ
F1 (X1, R2, nZ )+ σμ

μ+ γ
F1 (R1, R2, nZ )

F0,τ (Z1, R2, nZ )+ F1,t (Z1, R2, nZ )

= −F0 (Z1, R2, nZ )+ L (F1) (Z1, R2, nZ )

+ α (nZ + 1) F1 (X1, R2, nZ + 1)

+ α (nZ + 1) F1 (X1, X2, nZ + 1)

F1,t (X1, X2, nZ ) = L (F1) (X1, X2, nZ )− 2αnZ F1 (X1, X2, nZ )

+ σμ

μ+ 2γ
[F1 (X1, R2, nZ )+ F1 (R1, X2, nZ )] (5.8)

Since the time scale for stabilization of the functions F1 (η1, η2, nZ ) , (η1, η2) 
=
(Z1, R2) is of order one, we can assume that all these functions are in the steady regime
for relevant changes of the time scale τ . On the other hand, since F0 (Z1, R2, nZ )

reaches the equilibrium in times t of order one we have

F0 (Z1, R2, nZ ) = A (τ ) ψ0 (Z1, R2, nZ ) (5.9)
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where A (τ ) ≥ 0, A (0) = 1 and ψ0 (Z1, R2, nZ ) = 1
nZ !

( K
λ

)nZ e− K
λ . Notice that

∑∞
nZ =0 ψ0 (Z1, R2, nZ ) = 1. Due to the linearity of (5.8) there is a linear mapping

F0 (Z1, R2, nZ ) → {F1 (η1, η2, nZ ) , (η1, η2) 
= (Z1, R2)}

which can be written as follows. We define functions ψ1 (η1, η2, nZ ) , (η1, η2) 
=
(Z1, R2) as the solutions of

0 = L (ψ1) (R1, R2, nZ )− 2σμ

μ+ γ
ψ1 (R1, R2, nZ )+ (1 − �)ψ0 (Z1, R2, nZ )

0 = L (ψ1) (X1, R2, nZ )−
(
αnZ + σ (μ+ γ )

μ+ 2γ

)
ψ1 (X1, R2, nZ )

+ σγβ

μ+ 2γ
ψ1 (R1, X2, nZ )+ σμ

μ+ γ
ψ1 (R1, R2, nZ )

+�1{nZ ≥1}ψ0 (Z1, R2, nZ − 1)

0 = L (ψ1) (R1, X2, nZ )−
(
αnZ + σ (μ+ γ )

μ+ 2γ

)
ψ1 (R1, X2, nZ )

+ σγ

μ+ 2γ
ψ1 (X1, R2, nZ )+ σμ

μ+ γ
ψ1 (R1, R2, nZ )

0 = L (ψ1) (X1, X2, nZ )− 2αnZψ1 (X1, X2, nZ )

+ σμ

μ+ 2γ
[ψ1 (X1, R2, nZ )+ ψ1 (R1, X2, nZ )] (5.10)

Existence and uniqueness of these functions follow from Lemma 4. In the case of
ψ1 (X1, R2, nZ ) , ψ1 (R1, X2, nZ ) we must consider first the equation satisfied by
[ψ1 (X1, R2, nZ )+ ψ1 (R1, X2, nZ )] as in the analysis of (4.11), (4.12).

Taking into account (5.9) we obtain

F1 (η1, η2, nZ ) = A (τ ) ψ1 (η1, η2, nZ ) , (η1, η2) 
= (Z1, R2) (5.11)

On the other hand we must determine F0,τ (Z1, R2, nZ ) that imposes a compatibility
condition in order to avoid linear growth of the solutions of the fourth equation of
(5.8). This condition reads as

∞∑

nZ =0

F0,τ (Z1, R2, nZ ) = −
∞∑

nZ =0

F0 (Z1, R2, nZ )+ α

∞∑

nZ =0

(nZ + 1) F1 (X1, R2, nZ + 1)

+ α

∞∑

nZ =0

(nZ + 1) F1 (X1, X2, nZ + 1) (5.12)

Using (5.9), (5.11), as well as the initial distribution (5.3) we obtain

d A (τ )

dτ
= −χ A (τ ) (5.13)

A (0) = 1
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where

χ = 1 − α

∞∑

nZ =1

nZψ1 (X1, R2, nZ )− α

∞∑

nZ =1

nZψ1 (X1, X2, nZ ) (5.14)

We now claim that χ is strictly positive. This would imply that A (τ ) approaches
asymptotically to its equilibrium value A = 0 as τ → ∞. In order to prove this we
must study the properties of the solutions of (5.10). Notice that these equations have
many analogies with the steady state equations analyzed in Sect. 4.1. Actually they
can be analyzed along similar lines. Notice first that

ψ1 (R1, R2, nZ ) = f (R1, R2, nZ )

with f (R1, R2, nZ ) as in (4.10). On the other hand the equations forψ1 (X1, R2, nZ ) ,

ψ1 (R1, X2, nZ ) in (5.10) are the same as the ones for f1 (X1, R2, nZ ) , f1 (R1, X2, nZ )

in (4.11), (4.12) with A = 0, B = 1 in (4.9). Then

ψ1 (X1, R2, nZ ) = ϕ1 (nZ )+ ϕ2 (nZ ) , ψ1 (R1, X2, nZ ) = ϕ1 (nZ ) (5.15)

withϕ1, ϕ2 as in (4.17), (4.18) with f (R1,R2,nZ )
β

replaced byψ1 (R1, R2, nZ ). A similar
argument yields

ψ1 (X1, X2, nZ ) = f1 (X1, X2, nZ )

β

with f1 (X1, X2, nZ ) as in (4.19) and �(nZ ) = ψ1 (R1, X2, nZ )+ ψ1 (X1, R2, nZ ).
Using all these identities it follows that

χ = 1 − α

∞∑

nZ =1

nZ [ϕ1 (nZ )+ ϕ2 (nZ )] − α

∞∑

nZ =1

nZψ1 (X1, X2, nZ ) (5.16)

We notice that χ > 0. To check this we argue as follows. Using (5.15) and (4.14)
we obtain

�(nZ ) = 2ϕ1 (nZ )+ ϕ2 (nZ ) (5.17)

On the other hand, adding (4.19) with f (X1,X2,nZ )
β

replaced byψ1 (X1, X2, nZ ) and
using also (5.17) we obtain, after dividing by 2

α

∞∑

nZ =1

nZψ1 (X1, X2, nZ ) = σμ

2 (μ+ 2γ )

∞∑

nZ =0

�(nZ ) = σμ

μ+ 2γ

∞∑

nZ =0

ϕ1 (nZ )

+ σμ

2 (μ+ 2γ )

∞∑

nZ =0

ϕ2 (nZ ) (5.18)
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On the other hand, adding (4.17) with f (R1,R2,nZ )
β

replaced by ψ1 (R1, R2, nZ ) we
obtain

α

∞∑

nZ =1

nZϕ1 (nZ )+ σ

∞∑

nZ =0

ϕ1 (nZ ) = σγ

μ+ 2γ

∞∑

nZ =0

�(nZ )+ σμ

μ+ γ

∞∑

nZ =0

ψ1 (R1, R2, nZ )

and using (5.17) we obtain

α

∞∑

nZ =1

nZϕ1 (nZ ) = − σμ

μ+ 2γ

∞∑

nZ =0

ϕ1 (nZ )+ σγ

μ+ 2γ

∞∑

nZ =0

ϕ2 (nZ )

+ σμ

μ+ γ

∞∑

nZ =0

ψ1 (R1, R2, nZ ) (5.19)

On the other hand, adding (4.18) over nZ we obtain

α

∞∑

nZ =1

nZϕ2 (nZ )+ σ

∞∑

nZ =0

ϕ2 (nZ ) = � (5.20)

Adding the first equation in (5.10) and dividing by 2

σμ

μ+ γ

∞∑

nZ =0

ψ1 (R1, R2, nZ ) = (1 − �)

2
(5.21)

Using (5.21) to eliminate the last term in (5.19) and adding the resulting equation
to (5.18) and (5.20) we obtain, after some simplifications

α

∞∑

nZ =1

[nZϕ1 (nZ )+ nZϕ2 (nZ )+ nZψ1 (X1, X2, nZ )] = −σ
2

∞∑

nZ =0

ϕ2 (nZ )+ (1 + �)

2

(5.22)

Using the definition of χ in (5.14) we finally obtain

χ = (1 − �)

2
+ σ

2

∞∑

nZ =0

ϕ2 (nZ )

and since � ≤ 1 we obtain χ > 0. This gives the desired exponential decay of A (τ )
in (5.13).
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6 Computation of the transition probabilities in Sect. 4

In this section, we include the computations of the transition probabilities in Sect. 4.
Since the computations on other transition probabilities are either easy to deduce or
similar to one of the computations below, we will focus on the transitions from R1 R2
to R1 X2 and from R1 Z2 to R1 X2 just to illustrate the method used.

(1) To compute the transition probability from R1 R2 to R1 X2, we let τ = t/ε, where
ε � t � 1. Let us denote as θk, k = 1, 2, 3 the following states

θ1 = (nR = 0, R1, R2) , θ2 = (nR = 1, R1, X2) , θ3 = (nR = 0, R1, X2) ,

and let f (θk, τ ) be their probability at θk at time τ . Since the lifetime of the state
θ1 is of order ε, and the molecule R has a lifetime of order ε in absence of Z1 or
Z2 (cf. (3.1) and also (4.1)), the transition from R1 R2 to R1 X2 can take place in
times of order one, only by means of the transition from θ1 to θ3. Using (3.1) we
obtain that f (θk, τ ) , k = 1, 2, 3 satisfy, to the leading order, the following ODE
system

∂ f

∂τ
(θ1, τ ) = γ f (θ1, τ )

∂ f

∂τ
(θ2, τ ) = − (μ+ γ ) f (θ2, τ )

∂ f

∂τ
(θ3, τ ) = μ f (θ3, τ ) (6.1)

with the initial condition f (θ1, 0) = 0, f (θ2, 0) = 1, f (θ3, 0) = 0. We have
neglected in (6.1) transition probabilities of order ε, associated to fast transitions.
Solving (6.1), we find

f (θ2, τ ) = e−(μ+γ )τ , f (θ3, τ ) = μ

μ+ γ

[
1 − e−(μ+γ )τ ] , f (θ1, τ )

= γ

μ+ γ

[
1 − e−(μ+γ )τ ] (6.2)

Thus, in time scales of order ε � t � 1, the transition probability for unit of time
from R1 R2 to R1 X2 is the product of the transition probability from θ1 to θ2 by
the transition probability during such intermediate scale from θ2 to θ3. The former
probability isσ, and the second one is, due to our choice of time scales, f (θ2,∞) =
μ

μ+γ . Therefore, the transition rate from R1 R2 to R1 X2 is σμ
μ+γ . The computation

of the transition rate from R1 R2 to X1 R2 is similar. On the other hand all the
transition probabilities starting at the states R1 X2, X1 R2, Z1 Z2, X1 X2, R1 R2
can be computed in a similar form.

(2) To compute the transition probabilities starting at the point R1 Z2 we must take
into account that the number nR must eventually jump to zero after a finite number
of fast transitions. The states accessible from R1 Z2 by means of one slow tran-
sition and an arbitrary number of fast transitions are R1 X2, R1 R2. The first step
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in either of these transitions is a slow transition from the state (nR, R1 Z2) to the
state (nR, R1, X2). We now notice that there are two different fast ways for the
state (nR, R1, X2) to lose one molecule R, that are respectively a transition cor-
responding to (nR − 1, R1, X2) or a transition to (nR − 1, R1, R2). In the second
case, the state of the molecules R1, R2 cannot be modified any longer by means
of fast transitions, and therefore the final state, for times t satisfying ε � t � 1
would be (R1, R2) with nR = 0. Let us denote as θ (nR) the transition probability
from (nR, R1, X2) to (0, R1, X2). Notice, that in order to have a transition between
these two states we must have the following chain of events that takes place by
means of fast transitions

(nR, R1, X2) →μ (nR − 1, R1, X2) →μ · · · →μ (0, R1, X2)

Arguing as in the derivation of (6.2) we obtain that the following transition proba-
bility for the transitions (k, R1, X2) → (k − 1, R1, X2) , k ≥ 1 is given by μ

μ+γ k .
Therefore

θ (nR) = 1
∏nR

k=1

(
1 + γ

μ
· k

)

Since the distribution of the variable nR in the state R1 Z2, in time scales ε � t � 1
is the one given in the last formula of (4.1), it then follows that the transition
probability of R1 Z2 to R1 X2 is β� with

� =
∞∑

nR=0

P (nR) θ (nR) =
∞∑

nR=0

1

(nR)!

(
g
μ

)nR
e− g

μ

∏nR
k=1

(
1 + γ

μ
· k

)

= e− g
μ �

(
1 + μ

γ

) ∞∑

nR=0

(
g
γ

)nR

(nR)!�
(

nR + 1 + μ
γ

) (6.3)

The computation of the transition probability from R1 Z2 to R1 R2 is similar. Notice
that since θ (nR) < 1 it readily follows from (6.3) that � < 1, using the identity

e
g
μ = ∑∞

nR=0
1

(nR)!
(

g
μ

)nR
.

7 Concluding remarks

In this paper we study a stochastic system of chemical reactions characterized by
different times of chemical reaction. We have shown that in some suitable limit, the
system under consideration exhibits bistability. We have computed also in the same
asymptotic limit formulas for the probability distributions of switching times between
the two stable states of the system. Due to the fact that the number of molecules of
the system remains of order one, such computation cannot be made using the classical
Kramers’ formula. Other chemical systems containing a large number of chemical
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species, but exhibiting also bistability and where Kramers’ formula cannot be used
either, are considered in the companion paper [34].
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